研究業績

(2022). Integer programming for selecting set of informative markers in paternity inference. BMC Bioinformatics, 23:265.

引用 DOI

(2020). An improved de novo genome assembly of the common marmoset genome yields improved contiguity and increased mapping rates of sequence data. BMC Genomics, 21:243.

引用 DOI

(2019). Efficient generation of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing. Sci. Rep., 9:12719.

引用 DOI

(2018). Convolutional neural network based on SMILES representation of compounds for detecting chemical motif. BMC Bioinformatics, 19:526.

引用 DOI

(2018). A max-margin training of RNA secondary structure prediction integrated with the thermodynamic model. J. Bioinform. Comput. Biol., 16(6):1840025.

引用 DOI

(2017). DEclust: A statistical approach for obtaining differential expression profiles of multiple conditions. PLoS One, 12(11):e0188285.

引用 DOI

(2017). An accessibility-incorporated method for accurate prediction of RNA-RNA interactions from sequence data. Bioinformatics, 33(2):202-209.

引用 DOI

(2016). Rtools: a web server for various secondary structural analyses on single RNA sequences. Nucleic Acids Res., 44(W1):W302–W307.

引用 DOI

(2016). Generation of a Nonhuman Primate Model of Severe Combined Immunodeficiency Using Highly Efficient Genome Editing. Cell Stem Cell, 19(1):127-138.

引用 DOI

(2016). SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing. Bioinformatics, 32(12):i369-i377.

引用 DOI

(2016). Prediction of Gene Structures from RNA-seq Data Using Dual Decomposition. IPSJ Transactions on Bioinformatics, 9:1-6.

引用 DOI

(2015). Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis. Sci. Rep., 5:16894.

引用 DOI

(2015). A Machine Learning Based Approach to de novo Sequencing of Glycans from Tandem Mass Spectrometry Spectrum. IEEE/ACM Trans. Comput. Biol. Bioinform., 12(6):1267-1274.

引用 DOI

(2015). Whole-Genome Sequencing and Comparative Genome Analysis of Bacillus subtilis Strains Isolated from Non-Salted Fermented Soybean Foods. PLoS One, 10(10):e0141369.

引用 DOI

(2014). Whole genome complete resequencing of Bacillus subtilis natto by combining long reads with high-quality short reads. PLoS One, 9(10):e109999.

引用 DOI

(2012). DAFS: simultaneous aligning and folding of RNA sequences via dual decomposition. Bioinformatics, 28(24):3218-3224.

引用 DOI

(2012). An efficient algorithm for de novo predictions of biochemical pathways between chemical compounds. BMC Bioinformatics, 13:S8.

引用 DOI

(2012). Rtips: fast and accurate tools for RNA 2D structure prediction using integer programming. Nucleic Acids Res., 40(W1):W29-W34.

引用 DOI

(2012). COPICAT: a software system for predicting interactions between proteins and chemical compounds. Bioinformatics, 28(5):745-746.

引用 DOI

(2011). Using binding profiles to predict binding sites of target RNAs. J. Bioinform. Comput. Biol., 9(6):697-713.

引用 DOI

(2011). Improved measurements of RNA structure conservation with generalized centroid estimators. Front. Genet., 2:54.

引用 DOI

(2011). IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics, 27(13):i85-i93.

引用 DOI

(2011). CentroidHomfold-LAST: accurate prediction of RNA secondary structure using automatically collected homologous sequences. Nucleic Acids Res., 39(suppl 2):W100-W106.

引用 DOI

(2011). Adaptive seeds tame genomic sequence comparison. Genome Res., 21:487-493.

引用 DOI

(2011). Improving the accuracy of predicting secondary structure for aligned RNA sequences. Nucleic Acids Res., 39(2):393-402.

引用 DOI

(2010). Prediction of RNA secondary structure by maximizing pseudo-expected accuracy. BMC Bioinformatics, 11:586.

引用 DOI

(2010). Robust and accurate prediction of noncoding RNAs from aligned sequences. BMC Bioinformatics, 11:S3.

引用 DOI

(2010). RactIP: fast and accurate prediction of RNA-RNA interaction using integer programming. Bioinformatics, 26(18):i460-i466.

引用 DOI

(2010). A non-parametric Bayesian approach for predicting RNA secondary structures. J. Bioinform. Comput. Biol., 8(4):727-742.

引用 DOI

(2010). Improvement of structure conservation index with centroid estimators. Pac. Symp. Biocomput. 2010, p. 88-97.

引用 DOI

(2010). Improved prediction of transcription binding sites from chromatin modification data. Proceedings of the 2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2010, Montreal, QC, Canada, May 2-5, 2010.

PDF 引用 DOI

(2009). CENTROIDFOLD: a web server for RNA secondary structure prediction. Nucleic Acids Res., 37(Suppl 2):W277-W280.

引用 DOI

(2009). Predictions of RNA secondary structure by combining homologous sequence information. Bioinformatics, 25(12):i330-i338.

引用 DOI

(2009). Prediction of RNA secondary structure using generalized centroid estimators. Bioinformatics, 25(4):465–473.

引用 DOI

(2009). Genome-wide searching with base-pairing kernel functions for noncoding RNAs: computational and expression analysis of snoRNA families in Caenorhabditis elegans. Nucleic Acids Res., 37(3):999-1009.

引用 DOI

(2009). CentoroidAlign: fast and accurate aligner for structured RNAs by maximizing expected sum-of-pairs score. Bioinformatics, 25(24):3236-43.

引用 DOI

(2008). Software.ncrna.org: web servers for analyses of RNA sequences. Nucleic Acids Res., 36(Suppl 2):W75–W78.

引用 DOI

(2008). Directed acyclic graph kernels for structural RNA analysis. BMC Bioinformatics, 9:318.

引用 DOI

(2008). PSSMTS: position specific scoring matrices on tree structures. J. Math. Biol., 56:201–214.

引用 DOI

(2007). Stem kernels for RNA sequence analyses. J. Bioinform. Comput. Biol., 5(5):1103-1122.

引用 DOI

(2007). Stem Kernels for RNA Sequence Analyses. Bioinformatics Research and Development, First International Conference, BIRD 2007, pp 278–291, Berlin, Germany, March 12-14.

PDF 引用 DOI

(2005). RNA secondary structural alignment with conditional random fields. Bioinformatics, 21(Suppl 2):ii237–ii242.

引用 DOI

(2005). Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures. Bioinformatics, 21(11):2611-2617.

引用 DOI

(2003). Preferential Presentation of Japanese Near-synonyms using Definition Statements. Proceedings of the Second International Workshop on Paraphrasing, pp. 17–24, IWP@ACL 2003, Sapporo, Japan, July 11, 2003.

PDF 引用 DOI

(2002). Extracting Word Sequence Correspondences with Support Vector Machines. 19th International Conference on Computational Linguistics, COLING 2002, pp. 870–876, Howard International House and Academia Sinica, Taipei, Taiwan, August 24 - September 1, 2002.

PDF 引用

(1998). Maximum Entropy Model Learning of the Translation Rules. 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, COLING-ACL ‘98, Pages 1171–1175, August 10-14, 1998, Université de Montréal, Montréal, Quebec, Canada.

PDF 引用 DOI

(1996). Segmenting Sentences into Linky Strings Using D-bigram Statistics. 16th International Conference on Computational Linguistics, Proceedings of the Conference, COLING 1996, pp. 586–591, Center for Sprogteknologi, Copenhagen, Denmark, August 5-9, 1996.

PDF 引用