佐藤研究室(生命データサイエンス分野)
佐藤研究室(生命データサイエンス分野)
ニュース
メンバー
プロジェクト
サーバー
MXfold2
MXfold
IPknot
RactIP
業績
人材募集
連絡先
日本語
日本語
English
RNA Secondary Structure
RNA Secondary Structure Prediction by Conducting Multi-Class Classifications
Generating valid predictions of RNA secondary structures is challenging. Several deep learning methods have been developed for …
Jiyuan Yang
,
Kengo Sato
,
Martin Loza
,
Sung-Joon Park
,
Kenta Nakai
引用
DOI
Direct inference of base-pairing probabilities with neural networks improves prediction of RNA secondary structures with pseudoknots
Existing approaches to predicting RNA secondary structures depend on how the secondary structure is decomposed into substructures, that …
Manato Akiyama
,
Yasubumi Sakakibara
,
Kengo Sato
引用
DOI
A max-margin model for predicting residue-base contacts in protein-RNA interactions
Protein-RNA interactions (PRIs) are essential for many biological processes, so understanding aspects of the sequences and structures …
Shunya Kashiwagi
,
Kengo Sato
,
Yasubumi Sakakibara
引用
DOI
Rtools: a web server for various secondary structural analyses on single RNA sequences
The secondary structures, as well as the nucleotide sequences, are the important features of RNA molecules to characterize their …
Michiaki Hamada
,
Yukiteru Ono
,
Hisanori Kiryu
,
Kengo Sato
,
Yuki Kato
,
Tsukasa Fukunaga
,
Ryota Mori
,
Kiyoshi Asai
引用
DOI
Using binding profiles to predict binding sites of target RNAs
Prediction of RNA-RNA interaction is a key to elucidating possible functions of small non-coding RNAs, and a number of computational …
Unyanee Poolsap
,
Yuki Kato
,
Kengo Sato
,
Tatsuya Akutsu
引用
DOI
引用
×